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1NTRODUCTION 

An ideal vulcanized rubber (or crosslinked plastic 
in the rubbery state) is expected to reach an equi- 
librium elongation soon after a constant load has 
been applied to it. This behavior is closely ap- 
proached in the case of natural rubber vulcanizates 
provided the rubber has not been milled ext,ensively. 
Very seldom does one observe that a synthetic 
rubber approaches this ideal situation. This fact 
is the chief reason for the inferior hysteresis prop- 
erties of synthetic rubbers.’ 

It is the purpose of this paper to show what 
molecular factors influence the shape of the tensile 
creep curve of crosslinked polymers. Particular 
attention will be directed toward the behavior at  
long times. Our approach will be to examine the 
rubbery state creep curves for polyethyl methacry- 
late crosslinked with various amounts of ethylene 
dimethacrylate. A theoretical treatment of this 
problem will then be presented which gives insight 
into the reasons for the observed behavior. 

EXPERIMENTAL 

The polymers were prepared by polymerizing 
the required proportions of monomers in sealed 
tubes at 70°C. The ethyl methacrylate had been 
purified of inhibitor but the ethylene dimethacry- 
late was used in the form received from the manu- 
facturer (Monomer-Polymer Laboratories, dental 
grade). After machining to a convenient size 
and shape, the resultant plastic was heat treated 
for several hours at up to 130” C. so as to remove 
residual monomer. 

The tensile creep measurements were carried 
out in the usual way.’ The data were reduced to 
a composite curve for the polymers at 70°C. by 
using the customary temperature-time superposi- 

* This work was carried out under contract with the Good- 
year Tire and Rubber Company as a part of its program in 
support of basic research on synthetic rubber. 

tion method. These curves are shown in Figure 1. 
The composition of each of the polymers is given 
in Table I. 

TABLE I 
Composition of Polymers Used in This Study 

Polymer A B C D E F G 

Volume ’% 
ethylene 
dimeth- 
acrylate 0.000 0.0064 0.033 0.067 0.100 0.133 0.200 

At first sight one might think that the relative 
heights of the curves are not in proper relation. 
These have all been carefully checked, however, 
and the height variations are real. They arise 
because of two competing factors. 

First, it will be noticed that the noncrosslinked 
polymer is of very high molecular weight, and the 
plateau resulting from entanglements is clearly 
visible. However, as crosslinker is added, the 
equivalent “primary” molecular weight appears 
to decrease. This means that the more highly 
crosslinked systems appear as though they had 
been made from the crosslinking of much lower 
molecular weight primary molecules. For these 
materials the entanglement plateau will be so 
short as to be nonexistent. Second, the larger the 
number of crosslinks, the lower the curves will 
tend to%e at  long times. 

The combined effect is for the height of the 
curves at intermediate times to vary in the follow- 
ing way. The curves rise in height with increasing 
crosslinker because the “primary” molecular weight 
(and therefore the entanglement effect) is being 
reduced. Eventually, though, the crosslinks be- 
come dense enough so that the compliance decrease 
from that effect is overpowering. 

It will be noticed that these curves show all 
the typical variants found in the case of the usual 
vulcanized rubbers. Considerable insight into 
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Fig. 1. Tensile creep compliance for the polymers given in Table I. D is expressed in cm.2/dyne 
and t is in minutes. 

this behavior can be obtained from an examination 
of these curves. We shall only mention two fea- 
tures which are clearly visible, leaving the more 
abstruse consequences until the theory for the 
curves has been developed in a later section. 

First, the two most highly crosslinked samples 
can be used to compute the molecular weight 
between crosslinks, M,, from the familiar relation 

D ( w )  = MC/3pRT (1) 

where D( w )  is the equilibrium compliance. One 
finds M, values of 6500 and 5200. If one computes 
M, directly from the number of chemical cross- 
link monomers (making no corrections for cycliza- 
tion and chain ends), one finds values of 7500 and 
5100. A possible reason for the discrepancy 
found in the less highly crosslinked case will be 
pointed out after the theory has been developed. 
The observed agreement is perhaps only the result 
of the fortuitous cancellation of the effects of 
entanglements and chain ends. 

Second, it should be noticed that M ,  must be of 
the order of 7000 before the curves level off 
reasonably rapidly. This is probably much smaller 
than the molecular weight of the “primary” 
molecules. In addition, the slopes of the long 
time portions of the curves become quite large if 
the value of M ,  is doubled. 

THEORY 

Qualitatively, one can easily explain the slopes 
For example, if of the observed creep curves. 

the number of crosslinks is so low that each mole- 
cule is linked directly to only 6wo other molecules, 
as shown in Figure 2(a), then the whole sample will 
consist of one huge linear molecule. Upon 
stretching, such a molecule will show a nearly infinite 
retardation or response time, and consequently the 
creep curve will trend rapidly upward until 
exceedingly long times. 

Fig. 2. Schematic diagrams for sections of polymer net- 
works. 

On the other hand, a more highly crosslinked 
system, such as is shown in Figure 2(b),  will 
behave somewhat more sluggishly. If one pulls 
toward the left on chain 1, then chains 2 will also 
move toward the left and so will chains 3 and chains 
4. However, each succeeding set of chains will 
respond less rapidly because of the larger friction 
associated with each group. (We are, of course, 
assuming these chains to be immersed in a viscous 
matrix.) Consequently, the response of the more 
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distant chains will be so far delayed that the ob- 
server will find that, after the response of the first 
chain, the further creep is much less rapid than it 
used to be. Indeed, if the crosslink density is 
high enough, the creep curve may actually appear 
to become flat. 

These ideas may be developed quantitatively, 
and this is done in the Appendix. It turns out that 
the important quantities involved are the response 
time, r, of a single network chain, such as chain 1 
in Figure 2, and a parameter p defined as follows: 
p is the average number of the #2 chains in Figure 2 
which contain at least one other crosslink. For 
example, in Figure 2(a) one has p = 1.00 while in 
Figure 2(b) p = 2.00. 

It is found in the Appendix that the ratio of 
“the slope of the logarithmic creep curve’’ to “the 
compliance of the network at t+w computed 
from the simple theory of elasticity assuming 
afine deformation of the crosslinks” is given by the 
following relation for t >> 7 :  

[l/Do( a)]  [dD/d(ln t ) ]  E (?r7/16t)”P/lnp (2)  

The value of p depends, of course, on the ratio 
M,/M,, where M ,  is the average molecular weight 
of a network chain and M ,  is the number-average 
molecular weight of the primary molecules. The 
exact form of p varies from one system to another. 

An approximate form for p can be found in the 
following way. In  Figure 2(b) ,  one of the #2 
chains is a continuation of the #l chain. If it is 
to contain a second crosslink, then a length of chain 
2M,/Mo monomer units long must be free of chain 
ends. We are assuming that each network chain 
is exactly MJMO units long. The probability 
that no chain ends exist in this length is 

(1 - 2Mo/M,)2’”e’/M0 exp { - 4M,/M,) 

Similarly, the probabilities that the 2nd and 3rd 
chains in the #2 group contain crosslinks are 
exp { - 2Me/M,) and exp { - 4 M e / M n ) .  Therefore 
p will be 

P = exp { -  2Mc/Mn\ + 2 exp { -  4Mc/Mnf (3) 

Values of p for various values of M,/Mn are given 
in Table 11. 

TABLE I1 
Dependence of 0 on M J M ,  

M J M ,  0 0.10 0.20 0.25 0.30 0.33 0.347 

B 3.00 2.26 1.57 1.34 1.15 1.05 1.00 
l/lnj3 0.91 1.23 2.2 3 . 4  7 . 2  20 

At any given value of time after the start of a 
creep experiment, the slope of the creep curve will 
vary as l/ln p. This value is also shown in Table 
11. Clearly, for M J M ,  = 0.347, the creep curve 
will rise exceedingly rapidly. (We are here 
neglecting the effect of entanglements. This may 
be done if M ,  is not too large or if one is concerned 
only with very long times.) As M ,  decreases, the 
slope of the curve decreases very rapidly until 
M , / M ,  = 0.20 after which the curves will have an 
exceedingly small slope provided ~ / t  >> 1. 

These facts are amply substantiated by the 
experimental curves of Figure 1. In  fact, the 
discrepancy between the values for M ,  found in 
the case of the next to flattest curve there may 
merely be a reflection of the small but finite slope 
still present for that curve. 

APPLICATION TO RUBBER 

In  usual rubber practice one does not vulcanize 
to obtain an M ,  much below about 6000. Since in 
order for a mechanically stable network to be 
formed M,/M, < 0.347 as shown above, this 
means M ,  must be larger than 17,300. If a near 
zero slope to the creep curve is required (and it is 
if good hysteresis properties are desired), then 
M J M ,  < 0.20. That is, M ,  should be a t  least 
30,000. 

In the case of natural rubber, this limit on M ,  is 
easily satisfied since M ,  of the unmilled rubber is 
above 30,000. However, for GR-S one is a t  a far 
greater disadvantage. The unmilled rubber usually 
has an M ,  near or below 30,000.2 (Its exact 
value is not known with any certainty. Values for 
M ,  higher than this quoted in the literature are 
almost certainly the result of failure to measure 
the very low molecular weight species present.) 
It is this fact which gives rise to the observed 
high slope found for the creep curves of these 
materials and results in poor hysteresis properties. 

APPENDIX 

We shall attempt here to work out the compliance 
of a system such as that shown in Figure 2(b) .  
Consider a tetrahedral branch system at each 
crosslink. Then chain 1 with friction constant X 
per unit length and elasticity modulus e per unit 
length will be joined to a secondary set of chains 
as shown. If we replaced these three chains by an 
equivalent one it would have a modulus of elasticity 
e also but its friction coefficient would be larger 
than A. Take it to be PX where @ is defined in the 
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text. (This action neglects the usually short chains 
which do not further crosslink.) Similarly, the 
third set of chains will have constants e and p2X 
and the nth set, e and p"-'X. 

Viscosity- X ,9X SZi S3A t 
0 2 1  41 (N-IU r t 

Fig. 3. A mechanical model used for calculations in the text. 

The response of such a system is analogous to 
that of rod immersed in a liquid of varying viscosity 
as shown in Figure 3. This system is solvable 
using the method of Gross and FUOSS,~ extending it 
to multiple regions. Their method consists of 
solving the following differential equation for a 
rod with modulus of elasticity e and friction 
coefficient X when subjected to a tensile stress in 
the 2 direction u = uo exp {zt)  : 

(b2u/dz2) =- (X/e)(du/dt) (4) 
In our particular case we must find solutions to 

eq. (4) which make u and the displacement con- 
tinuous along the rod. It turns out that the 
compliance function is given by the following 
expression (using the notation of Gross and Fuoss) : 

. .  
p = 1  

with yn2 = (X/e)pn and N being the number of 
sections in the bar. 

Following the procedure of Gross and Fuoss 
further we can find the retardation spectrum from 
the poles of the compliance function. For simplicity 
we will ignore all the poles given by iz > 7r2(2Zy,JZ. 
The poles we ha,ve neglected give rise to the higher 
overtone vibrations of the individual network chains 
and should not be important for creep experiments 
at long times. 

The derivative of the creep displacement of the 
end of the rod pictured in Figure 3 may then be 
written as 

Q is a complex function of p of the order of unity. 
The exact value of Q is seriously dependent upon 
the way in which the rod of Figure 3 is sectioned. 
Properly one should average it over all the various 
sample network chain lengths. For our purposes 
we shall be satisfied to consider it a constant. 

Since we are interested in t large, the important 
terms will occur for n large. With that in mind one 
finds 

m 

$(t) - C [I - exp{- t / 7 ~ )  I (7) 
n=o 

where 
= 412X/7r2e 

Suppose p was a very large number. This would 
be equivalent to placing a solid wall a t  the end of 
the first section of the bar. Or, this would be 
equivalent to considering chain 1 of Figure 2 to 
be fastened to a solid object. Since only the 
term with ?z = 0 in the above expression for $(t) is 
of importance under these conditions, this term 
must represent the kinetic theory response of a 
single chain. 

Actually we are interested in the response of the 
whole sample, and not in this particular system. 
The first term of the above sum is, as pointed out, 
the primary response of the individual chain. 
The second term is the secondary response of the p 
attached chains and so on. If we tried to obtain 
the sample response by merely multiplying by 
the number of chains we would count the second 
term too many times and it would be p times too 
large. In fact the nth term would be pn-l times 
too large. The sample response will therefore be 
proportional to 

m 

D(t) - p-" [l - exp{- t/rP2") ] (8) 
n=o 

Calling the first term Do(t), it is now a simple 
matter to compute  DO( a) ] [dD/d(lnt) ] provided 
one assumes t / r  >> 1. When this is done, one 
finds the expression given as eq. (2) in the text. 
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Synopsis 
An ideal crosslinked rubber will reach an equilibrium 

elongation soon after a constant tensile stress has been a p  where we have let N -t co. 
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plied to it. Actual materials never reach an equilibrium 
strain in many cases. This fact is clarified by studying the 
creep curves for molten polyethyl methacrylate crosslinked 
with varying amounts of ethylene dimethacrylate. A quan- 
titative theory for the observed effects is presented. It 
shows that the slope of the long time portion of the creep 
curve is dependent primarily on a parameter which charac- 
terizes the number of effective chains emanating from a 
network branch point. Reasonable agreement between 
theory and experiment is found. 

RQsum6 
Un caoutchouc ponte ideal atteindra une dongation 

d’equilibre aussiti3t aprhs qu’une tension constante lui aura 
6t4 appliqu6e. Les materiaux actuels n’atteignent pas un 
huilibre de tension dans la plupart des cas. Ce fait est 
explique en 6tudiant les courbes de contraction pour des 
polym6thacrylates de m6thyle fondus ramifies avec des 
quantit6s variables de dimethacrylate d’6thylhne. Une 
theone quantitative des effets observ6s est avanc6e. Elle 
montre que la pente de la partie lente de la courbe de con- 
traction d6pend en premier lieu d’un parametre caractCrisant 

le nombre de chaines effectives partant d’un point du r6seau. 
On trocve un accord satisfaisant entre la thhrie  et l’exp6ri- 
ence. 

Zusammenfassung 
Ein idealer, vernetzter Kautschuk wird bald nach Anle- 

gung einer konstanten Zugspannung eine Gleichgewichtsde- 
hnung erreichen. Die realen Stoffe erreichen in vielen Fallen 
niemals eine Gleichgewichtsverformung. Dieses Verhdten 
wird durch Untersuchung der Kreichkurven fur geschmol- 
zenes Polyathylmethacrylat aufgeklart, das mit wechselnden 
Mengen von hhylendimethacrylat vernetzt ist. Eine 
quantitative Theorie der beobachteten Effekte wird vorge- 
legt. Sie zeigt, dass die Neigung des Teiles der Kreichpurve, 
der fur langzeitige hderungen charakteristisch ist, in erster 
Linie von einem Parameter abhangt, der fur die Zahl der von 
einem Verzweigungspunkt des Netzwerkes ausgehenden 
Ketten kennzeichnend ist. Es wurde eine befriedigende 
ebereinstimmung zwischen Theorie und Experiment fest- 
gestellt. 
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